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N O N L I N E A R  D E F O R M A T I O N  A N D  B U C K L I N G  OF C U R V I L I N E A R  

P I P E S  L O A D E D  B Y  E X T E R N A L  P R E S S U R E  

S. V. Levyakov UDC 539.3 

The problem of loading of a thin-walled elastic pipe (a toroidal shel 0 by external pressure is 
examined in a geometrically nonlinear formulation. A numerical algorithm is used to study 
the nonlinear deformation of the shell and the stability of its equilibrium states when its cross 
section has undergone a significant change in shape. Results are presented from a determination 
of the critical stresses of  curvilinear pipes with allowance for moments in the subcritical state. 
These results are compared with the approximate solution. 

The linear stability of long curvilinear pipes of circular cross section under external pressure was 
examined in [1, 2], where approximate solutions of the problem were obtained. The solutions make it possible 
to determine the critical pressure as a function of the geometric characteristics ~f the pipe. The solutions were 
constructed without consideration of subcritical deformation of the cross sections, and it was assumed that 
the radius of the cross section was small compared to the radius of curvature of the axial line of the pipe. 

It is of interest to examine the problem of the stability of pipes in a geometrically nonlinear formulation 
with allowance for moments in the subcritical stress-strain state, evaluate the effect of geometric parameters 
on the critical load, and study the equilibrium modes in the region of large displacements. 

We shall examine a pipe representing a sector of an elastic toroidal thin-walled shell obeying the 
Kirchhoff-Love hypotheses. It is assumed [1, 2] that in the deformed state the shell is toroidal and that the 
cross sections remain planar and normal to the axial line and can undergo deformation in their own planes. 
Geometrically nonlinear relations were derived in [3, 4] on the basis of these assumptions and a finite-element 
model of the shell was constructed. The geometry of the cross section is determined by the nodal values of 
the coordinates and the direction cosines of unit normals to the contour of the cross section. 

We shall find the strain state of the shell by the method of discrete continuation, which is based on 
stepwise determination of the solution and its subsequent refinement by iteration. At each step, we construct 
a solution which is linearized with respect to the equilibrium state that is found. This solution is then refined 
on the basis of the orthogonality condition of the vector of the corrections to the vector of the linearized 
solution [5]. 

The system used in the Newton-Raphson method for a certain continuation step has the form 

Hk-lSqk + w~-lSptC + gk-1 = 0, 5q t --~ ~ [ X l l , X 2 1 , ~ O I , . . .  ,Xln,X2n,~On,e,~], (1) 

where g and H are the Hess gradient and matrix, which are composed of coefficients of the first and second 
variations of the total potential energy of the set of finite elements [4], the components of the vector w are 
determined by the formula wi = 02U/OqiOp, where U is the force potential associated with the surface pressure 
p, which is an unknown in the problem, xii are the coordinates of the nodes of the deformed cross section, toj 
are the angles of rotation of the normal vector in the plane of the cross section, e and ae are the strain and 
curvature of the axial line of the shell, n is the number of nodes, and the superscript denotes the iteration 
number. 
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Fig. 1. Distribution of normal deflection in the cross section of a shell: the solid and 
dashed curves refer to the linear and nonlinear solutions, respectively. 

System (1) is supplemented by the control equations [5] 

(Sql) t Sq 1 + (6pl) 2 = 6s 2 for k = 1, (6qk) t 6q I + 6pk6p 1 = 0 for k > 1, (2) 

where 6s is the assigned continuation step. 
The solution of system (1) is represented in the form 

6q k = 6pku k + v k, (3) 

where u k and v k satisfy the systems 

H k - l u  k + w k-1 = 0, H k - l v  ~ + gk-1 = 0. (4) 

Substitution of (3) into (2) with allowance for gO = 0 and v 1 = 0 leads to formulas for calculation of 
the increment of load 

6p 1 = "4-5s/(1 + ( u l ) t u ' )  1/2 for k = 1, 6p t = --(vk)tul / (1  + (uk)tu 1) for k > 1. (5) 

The sign in (5) determines the direction of continuation of the solution and at the ith step is chosen 
on the basis of the following condition (no summation is performed over i) 

6 1"t6 1 - 6  16 1 qi) qi-l-I-  Pi Pi-1 >0" 

After each iteration, the new values of the desired parameters are calculated from the formulas 

x k : l  k _k+l n k k+l k �9 k+l Zi j + 6~ij  , ( ~ ) k + l  = = (~ i j )  coS6~Oj + )~ilsln6~oj , 

ek+l = ek + 6zk+l, ~ek+l = ~ek + 6a.k+l, pk+l = pk + 6pk+l, 

where A~ and Aij are the direction cosines of the normal and tangent unit vectors to the contour of the cross 
section of the shell. 

The question of the stability of the equilibrium states that are found is answered by checking to see if 
the matrix H ~ has a fixed sign. This information can be obtained by using the direct Gauss method in the 
solution of systems (4). 

We shall study the deformation of a toroidal shell having the following characteristics: r/h = 100, 
kr = 0,5, v = 0,3, and # = 165,2, where r is the radius of the cross section, k is the curvature of the axial line, 

h is the wall thickness; v is the Poisson ratio, and p = X/12(1 - v 2) kr2/h is a parameter that characterizes the 
initial curvature. We shM1 examine equilibrium modes that are symmetric relative to the plane of curvature 
of the axial line. There will be no restrictions on the possibility of self-intersection of the surface of the shell. 
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Fig. 2. Diagrams of the  equilibrium states of a toroidal shell: the solid and dashed 
curves refer to the  stable and unstable states, respectively. 
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Fig. 3. Shapes of the  cross section of the shell. 

Fig. 4. Dependence of the  critical pressure parameter  of a pipe on its initial curvature 
parameter:  the  solid curve shows the numerical solution, the points show the approximate 
solution in [2], and the  dashed curve shows the solution calculated by means of Eq. (6). 

Calculations show tha t  the  cross section is distorted near the line of zero Gaussian curvature of the 
shell regardless of how low the pressure level is. Figure 1 shows curves depicting the  distribution of the 
normal deflection to across the  shell. The  curves were obtained by the above numerical algorithm and on 
the basis of the BENDPAC program [6] for a linear analysis of toroidal shells. Here A = p/po, where p0 = 
(1/4)E(1 - v 2 ) - l ( h / r )  3 is the  critical pressure in the straight pipe. Nonlinear deformation becomes quite 
evident for A > 6: the  displacements are redistributed in the cross section and a local indentat ion is formed�9 
The size of the indentat ion increases with the load up to A, = 9,927, where the shell becomes unstable. Thus, 
in contrast to straight pipes [7], a toroidal shell becomes unstable when the limit point is reached. 

Figure 2 shows diagrams of the equilibrium states. The  values plotted off the x axis represent the 
dimensionless deflection for ~o = ~r/2 (a) and the parameter  that  characterizes the curvature of the axial line 

626 



of the shell is ~ = ~/12(1 - u2)zer2/h (b). The parameter that characterizes the external pressure A is plotted 
off the y axis. There are six limit points on the main branch of the nonlinear solution (curves I), which passes 
through a point representing the initial undeformed state. Figure 3 shows shapes of the cross section which 
correspond to the equilibrium states in Fig. 2. 

We also studied the branch of solutions which is isolated from the main branch (curves II) and has 
o,,e limit point (point 7 in Fig. 2a). The linear solution of the problem for A > A. was taken as the initial 
approximation for the transition to the isolated branch. We note that the shapes of deformation of the cross 
sections corresponding to the isolated branch (state 7 in Fig. 3) are similar to the modes of flattening of the 
shell in pure bending by edge moments. In both cases, the cross sections of the shells for which the value of 
the parameter # is large are deformed as a result of local bending in the neighborhood of the line of zero 
Gaussian curvature. 

To determine the effect of the geometric characteristics on the stability of curvilinear pipes, we examined 
shells with values of the parameter r/h = 50, 100, and 200 and the Poisson ratio v = 0,3. The calculations 
showed that changes which occur in r, h, and k with a fixed value of ft have almost no effect on the critical 
pressure parameter A,. Figure 4 shows the dependence of A, on the initial curvature parameter ft. It was 
established that the following approximate relation is valid for ft > 10: 

A, = (ll3)ft 2/3. (6) 

It is noteworthy that  the approximate solution found in [2] under several simplifying assumptions is 
sufficiently accurate in determining the critical pressures within a broad range of geometric parameters of 
pipes. 

Pipes with small values of the curvature parameter ft < 10 also become unstable upon passage through 
the limit point. In this case, the forms of the cross section in the neighborhood of the critical point are close 
to an oval whose major axis lies in the plane of curvature of the pipe. 

We express our thanks to J. F. Whatham for prov!ding the BENDPAC program. 
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